Probabilistic Neural Network-Based Flexible Estimation of Lithium-Ion Battery Capacity Considering Multidimensional Charging Habits
ENERGY(2024)
Shanghai Univ Elect Power | Shenzhen Power Supply Bur Co Ltd
Abstract
As the adoption of electric vehicles (EVs) continues to rise due to increasing environmental concerns and policy support, the accurate estimation of battery capacity becomes crucial for efficient vehicle management and prolonging battery life. This study presents a framework for capacity estimation under real-world electric vehicle charging scenarios, reflecting a variety of driving habits. A novel CNN-LSTM neural network architecture featuring a probabilistic regression layer (CLPNN) is developed, utilizing short time interval data to provide accurate, reliable capacity and uncertainty estimates for diverse charging situations. The adaptability of the proposed method is evaluated by intercepting real-vehicle statistics to simulate charging events. We introduce two result fusion strategies for refining capacity estimations: the Trimmed Mean Strategy and the Uncertainty Screening Strategy. Their performances are meticulously compared to establish the most effective approach. Moreover, probabilistic layer transfer learning is employed to address the challenge of insufficient labeled data in the target domain, thereby improving the transfer and generalization performance of the model. The findings of this study underscore the potential of the proposed methods in accurately evaluating battery capacity and dealing with uncertainties in real-world EV operations.
MoreTranslated text
Key words
Lithium-ion battery,Capacity estimation,Probabilistic neural network,Multi-results fusion
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Related Papers
Journal of The Electrochemical Society 2024
被引用0
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper