Evaluating Differences among Crop Models in Simulating Soybean In-Season Growth
FIELD CROPS RESEARCH(2024)
Univ Kentucky
Abstract
Crop models are useful tools for simulating agricultural systems that require continued model development and testing to increase their robustness and improve how they describe our current understanding of processes. Coordinated and "blind" evaluation of multiple models using same protocols and experimental datasets provides unique opportunities to further improve models and enhance their reliability. For soybean [Glycine max (L.) Merr.], there has been limited coordinated multi-model evaluations for the simulation of in-season plant growth dynamics. We evaluated ten dynamic soybean crop models for their simulation of in-season plant growth using data from five experiments conducted in Argentina, Brazil, France, and USA. We evaluated models after a Blind (using only phenology data) and a Full calibration (with in-season and end-of-season variables). Calibration reduced model uncertainty by reducing standard bias for the simulation of in-season variables (biomass, leaf, pod, and stem weights, and leaf area index, LAI). However, we found that most models had difficulty in reproducing leaf growth dynamics, with normalized root mean squared error (nRMSE) of 56% for leaf weight and 43% for LAI (across locations and models after Full calibration). Models with different levels of complexity and experience were capable of simulating final seed yield at maturity with reasonable accuracy (nRMSE of 8-31% after Full calibration). However, the nRMSE for pod weight (of 17-64% after Full calibration) was two-fold larger than that of seed yield. Moreover, the models differed in how they simulated timing from sowing to beginning seed growth (47-93 days) and effective seed filling period (18-54 days), owing to model structural differences in defining the reproductive developmental stages. Overall, we identified the following processes that can benefit from further model improvement: leaf expansion and senescence, reproductive phenology, and partitioning to reproductive growth. Simulation of pod wall tissue and individual seed cohorts is another aspect that many models currently lack. Model improvement can benefit from high-temporal resolution experimental datasets that concurrently account for phenology, plant growth, and partitioning. Further, we recommend collecting reproductive phenology in the field consistent with actual dry matter allocation to organs in the models and collecting multiple observations of seed and pod weight to aid model improvement for simulation of seed growth and yield formation.
MoreTranslated text
Key words
Agricultural Model Intercomparison and,Improvement Project (AgMIP),multi -model evaluation,pod growth,leaf area index,reproductive partitioning
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined