WeChat Mini Program
Old Version Features

Sampling Design Methods for Making Improved Lake Management Decisions

ENVIRONMETRICS(2024)

Univ Jyvaskyla

Cited 1|Views7
Abstract
The ecological status of lakes is important for understanding an ecosystem's biodiversity as well as for service water quality and policies related to land use and agricultural run-off. If the status is weak, then decisions about management alternatives need to be made. We assess the value of information of lake monitoring in Finland, where lakes are abundant. With reasonable ecological values and restoration costs, the value of information analysis can be compared with the survey's costs. Data are worth gathering if the expected value from the data exceeds the costs. From existing data, we specify a hierarchical Bayesian spatial logistic regression model for the ecological status of lakes. We then rely on functional approximations and Laplace approximations to get closed-form expressions for the value of information of a sampling design. The case study contains thousands of lakes. The combinatorially difficult design problem is to wisely pick the right subset of lakes for data gathering. To solve this optimization problem, we study the performance of various heuristics: greedy forward algorithms, exchange algorithms and Bayesian optimization approaches. The value of information increases quickly when adding lakes to a small design but then flattens out. Good designs are usually composed of lakes that are difficult to manage, while also balancing a variety of covariates and geographic coverage. The designs achieved by forward selection are reasonably good, but we can outperform them with the more nuanced search algorithms. Statistical designs clearly outperform other designs selected according to simpler criteria.
More
Translated text
Key words
data collection,decision-making,environmental monitoring,optimal design,value of information
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined