Development and Validation of a Deep Learning Model to Reduce the Interference of Rectal Artifacts in MRI-based Prostate Cancer Diagnosis
RADIOLOGY-ARTIFICIAL INTELLIGENCE(2024)
Guangdong Prov Peoples Hosp | Xian OUR United Corp | Xidian Univ | Three Gorges Univ | Shanghai Jiao Tong Univ | Wuhan Univ | Southern Med Univ
Abstract
Purpose: To develop an MRI-based model for clinically significant prostate cancer (csPCa) diagnosis that can resist rectal artifact interference. Materials and Methods: This retrospective study included 2203 male patients with prostate lesions who underwent biparametric MRI and biopsy between January 2019 and June 2023. Targeted adversarial training with proprietary adversarial samples (TPAS) strategy was proposed to enhance model resistance against rectal artifacts. The automated csPCa diagnostic models trained with and without TPAS were compared using multicenter validation datasets. The impact of rectal artifacts on the diagnostic performance of each model at the patient and lesion levels was compared using the area under the receiver operating characteristic curve (AUC) and the area under the precision-recall curve (AUPRC). The AUC between models was compared using the DeLong test, and the AUPRC was compared using the bootstrap method. Results: The TPAS model exhibited diagnostic performance improvements of 6% at the patient level (AUC: 0.87 vs 0.81, P < .001) and 7% at the lesion level (AUPRC: 0.84 vs 0.77, P = .007) compared with the control model. The TPAS model demonstrated less performance decline in the presence of rectal artifact-pattern adversarial noise than the control model (Delta AUC: -17% vs -19%, Delta AUPRC: -18% vs -21%). The TPAS model performed better than the control model in patients with moderate (AUC: 0.79 vs 0.73, AUPRC: 0.68 vs 0.61) and severe (AUC: 0.75 vs 0.57, AUPRC: 0.69 vs 0.59) artifacts. Conclusion: This study demonstrates that the TPAS model can reduce rectal artifact interference in MRI-based csPCa diagnosis, thereby improving its performance in clinical applications.
MoreTranslated text
Key words
Diagnostic Accuracy,Texture Analysis,Cancer Imaging
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined