Update of the Minimum Information about BIobank Data Sharing (MIABIS) Core Terminology to the 3rd Version.
Biopreservation and Biobanking(2024)
Finnish Natl Inst Hlth & Welf
Abstract
Introduction: The Minimum Information About BIobank Data Sharing (MIABIS) is a biobank-specific terminology enabling the sharing of biobank-related data for different purposes across a wide range of database implementations. After 4 years in use and with the first version of the individual-level MIABIS component Sample, Sample donor, and Event, it was necessary to revise the terminology, especially to include biobanks that work more in the data domain than with samples. Materials & Methods: Nine use-cases representing different types of biobanks, studies, and networks participated in the development work. They represent types of data, specific sample types, or levels of organization that were not included earlier in MIABIS. To support our revision of the Biobank entity, we conducted a survey of European biobanks to chart the services they provide. An important stakeholder group for biobanks include researchers as the main users of biobanks. To be able to render MIABIS more researcher-friendly, we collected different sample/data requests to analyze the terminology adjustment needs in detail. During the update process, the Core terminology was iteratively reviewed by a large group of experts until a consensus was reached. Results: With this update, MIABIS was adjusted to encompass data-driven biobanks and to include data collections, while also describing the services and capabilities biobanks offer to their users, besides the retrospective samples. The terminology was also extended to accommodate sample and data collections of nonhuman origin. Additionally, a set of organizational attributes was compiled to describe networks. Discussion: The usability of MIABIS Core v3 was increased by extending it to cover more topics of the biobanking domain. Additionally, the focus was on a more general terminology and harmonization of attributes with the individual-level entities Sample, Sample donor, and Event to keep the overall terminology minimal. With this work, the internal semantics of the MIABIS terminology was improved.
MoreTranslated text
Key words
MIABIS,biobank,network,standardization,interoperability
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined