Revealing the Microscopic Mechanism of Elementary Vortex Pinning in Superconductors
PHYSICAL REVIEW X(2024)
Zhejiang Institute of Photoelectronics & Zhejiang Institute for Advanced Light Source Department of Physics | University of Chinese Academy of Sciences School of Physical Sciences | Nanjing University National Laboratory of Solid State Microstructures and Department of Physics | Fudan University Department of Physics | Hefei National Laboratory Shanghai Research Center for Quantum Sciences | Nanjing University Collaborative Innovation Center for Advanced Microstructures | University of Science and Technology of China Shanghai Research Center for Quantum Sciences
Abstract
Vortex pinning is a crucial factor that determines the critical current of practical superconductors and enables their diverse applications. However, the underlying mechanism of vortex pinning has long been elusive, lacking a clear microscopic explanation. Here, using high-resolution scanning tunneling microscopy, we studied single vortex pinning induced by point defect in layered FeSe-based superconductors. We found the defect-vortex interaction drives low-energy vortex bound states away from E_{F}, creating a “mini” gap that effectively lowers the system energy and enhances pinning. By measuring the local density of states, we directly obtained the elementary pinning energy and estimated the pinning force via the spatial gradient of pinning energy. The results are consistent with bulk critical current measurement. Furthermore, we showed that a general microscopic quantum model incorporating defect-vortex interaction can naturally capture our observation. It suggests that the local pairing near pinned vortex core is actually enhanced compared to unpinned vortex, which is beyond the traditional understanding that nonsuperconducting regions pin vortices. Our study thus unveils a general microscopic mechanism of vortex pinning in superconductors and provides insights for enhancing the critical current of practical superconductors.
MoreTranslated text
PDF
View via Publisher
AI Read Science
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined