WeChat Mini Program
Old Version Features

Multi-path Fusion in SFCF-Net for Enhanced Multi-frequency Electrical Impedance Tomography

IEEE transactions on medical imaging(2024)

Fourth Mil Med Univ | Xi An Jiao Tong Univ

Cited 0|Views35
Abstract
Multi-frequency electrical impedance tomography (mfEIT) offers a nondestructive imaging technology that reconstructs the distribution of electrical characteristics within a subject based on the impedance spectral differences among biological tissues. However, the technology faces challenges in imaging multi-class lesion targets when the conductivity of background tissues is frequency-dependent. To address these issues, we propose a spatial-frequency cross-fusion network (SFCF-Net) imaging algorithm, built on a multi-path fusion structure. This algorithm uses multi-path structures and hyper-dense connections to capture both spatial and frequency correlations between multi-frequency conductivity images, which achieves differential imaging for lesion targets of multiple categories through cross-fusion of information. According to both simulation and physical experiment results, the proposed SFCF-Net algorithm shows an excellent performance in terms of lesion imaging and category discrimination compared to the weighted frequency-difference, U-Net, and MMV-Net algorithms. The proposed algorithm enhances the ability of mfEIT to simultaneously obtain both structural and spectral information from the tissue being examined and improves the accuracy and reliability of mfEIT, opening new avenues for its application in clinical diagnostics and treatment monitoring.
More
Translated text
Key words
Imaging,Conductivity,Frequency measurement,Impedance,Image reconstruction,Feature extraction,Lesions,Deep learning,information fusion,image reconstruction,multi-frequency electrical impedance tomography (mfEIT)
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined