Chrome Extension
WeChat Mini Program
Use on ChatGLM

Pneumonia App: a mobile application for efficient pediatric pneumonia diagnosis using explainable convolutional neural networks (CNN)

CoRR(2024)

Cited 0|Views18
Abstract
Mycoplasma pneumoniae pneumonia (MPP) poses significant diagnostic challenges in pediatric healthcare, especially in regions like China where it's prevalent. We introduce PneumoniaAPP, a mobile application leveraging deep learning techniques for rapid MPP detection. Our approach capitalizes on convolutional neural networks (CNNs) trained on a comprehensive dataset comprising 3345 chest X-ray (CXR) images, which includes 833 CXR images revealing MPP and additionally augmented with samples from a public dataset. The CNN model achieved an accuracy of 88.20 a specific accuracy of 97.64 testing dataset. Furthermore, we integrated explainability techniques into PneumoniaAPP to aid respiratory physicians in lung opacity localization. Our contribution extends beyond existing research by targeting pediatric MPP, emphasizing the age group of 0-12 years, and prioritizing deployment on mobile devices. This work signifies a significant advancement in pediatric pneumonia diagnosis, offering a reliable and accessible tool to alleviate diagnostic burdens in healthcare settings.
More
Translated text
PDF
Bibtex
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper

要点】:本研究提出了一款名为PneumoniaAPP的移动应用程序,利用深度学习技术特别是卷积神经网络(CNN)进行儿童肺炎的快速诊断,并通过可解释性技术帮助医生定位肺部不透明区域,针对的是儿童Mycoplasma pneumoniae肺炎(MPP)的准确检测。

方法】:研究采用了基于卷积神经网络的方法,并在一个包含3345张胸部X射线图像(CXR)的全面数据集上进行训练,其中包括833张显示MPP的图像,同时辅以公共数据集的样本进行增强。

实验】:实验在一个独立的测试数据集上达到了88.20%的整体准确度和针对MPP的97.64%的特定准确度,并且通过集成可解释性技术,提高了PneumoniaAPP在帮助呼吸科医生进行肺部不透明区域定位方面的有效性。