Learning Abstraction Selection for Bayesian Program Analysis
Proceedings of the ACM on Programming Languages(2024)
Abstract
We propose a learning-based approach to select abstractions for Bayesian program analysis. Bayesian program analysis converts a program analysis into a Bayesian model by attaching probabilities to analysis rules. It computes probabilities of analysis results and can update them by learning from user feedback, test runs, and other information. Its abstraction heavily affects how well it learns from such information. There exists a long line of works in selecting abstractions for conventional program analysis but they are not effective for Bayesian program analysis. This is because they do not optimize for generalization ability. We propose a data-driven framework to solve this problem by learning from labeled programs. Starting from an abstraction, it decides how to change the abstraction based on analysis derivations. To be general, it considers graph properties of analysis derivations; to be effective, it considers the derivations before and after changing the abstraction. We demonstrate the effectiveness of our approach using a datarace analysis and a thread-escape analysis.
MoreTranslated text
Key words
Static analysis,Bayesian network,alarm ranking,machine learning for program analysis,abstract interpretation
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
GPU is busy, summary generation fails
Rerequest