[Analysis of Data Quality/Completeness in Covid-19 Cases: Why A Digital Integrated Data Collection is Also Necessary for Pandemic Control].
GESUNDHEITSWESEN(2024)
Gesundheitsamt Regensburg
Abstract
BACKGROUND:Epidemiological data on the corona pandemic collected in the public health sector in Germany have been less useful in estimating vaccine effectiveness and clinical outcomes compared to other countries.METHODS:In this retrospective observational study, we examined the completeness of selected own data collected during the pandemic. Information on the important parameters of hospitalization, vaccination status and risk factors for severe course and death over different periods were considered and evaluated descriptively. The data are discussed in the extended context of required digital strategies in Germany.RESULTS:From January 1, 2022 to June 30, 2022, we found 126,920 administrative procedures related to COVID-19. With regard to the data on hospitalization, in 19,749 cases, it was stated "No", in 1,990 cases "Yes" and in 105,181 cases (83+%) "Not collected" or "Not ascertainable". Concerning vaccinations, only a small proportion of procedures contained information on the type of vaccine (11.1+%), number of vaccinations (4.4+%) and date of the last vaccination (2.1+%). The completeness of data on chronic conditions/risk factors in COVID-19-related deaths decreased over four consecutive periods between 2020 and 2022 as case numbers increased.CONCLUSION:Future strategies taking into account meaningfulness and completeness of data must comprise modern technical solutions with digital data collection on infections without putting the principle of data protection at risk.
MoreTranslated text
Key words
SARS-CoV-2,Pandemie,Datenvollstandigkeit,Digitalisierung,Impfstatus,Pandemic,Data completeness,Digitalization,Vaccination Status
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined