Dynamic Identification Methods and Artificial Intelligence Algorithms for Damage Detection of Masonry Infills
Journal of Civil Structural Health Monitoring(2024)SCI 3区
University of Sannio | University of Naples Federico II
Abstract
The failure of non-structural components after an earthquake is among the most expensive earthquake-incurred damage, and may also have life-threatening consequences, especially in public buildings with very crowded facilities, because exposition is high and the risk increases accordingly. The assessment of existing non-structural components is particularly complex because in-depth in situ investigation is necessary to detect the presence of deficiencies or damage. This problem concerns interior and exterior partitions made of various materials (e.g., glass and masonry), as well as equipment and facilities in construction (building, industry, and infrastructure). Defining the boundary conditions of these components is of paramount importance. Indeed, external restraints (i) affect dynamic properties and, thus, the action experienced during an earthquake, and (ii) influence the capacity to detach the component before failure from the bearing structure (e.g., an infill wall connected to the main structural frame, or equipment connected to secondary structural members such as floors). The authors, therefore, conducted environmental vibration tests of an infill wall and refined a finite element model to simulate typical damage scenarios to be implemented on the wall. Selected damage scenarios were then artificially realized on the existing infill and further ambient vibration tests were performed to measure the accelerations for each of them. Finally, the authors used these accelerations to detect the damage by means of established OMA, as well as innovative machine learning techniques. The results showed that convolutional variational autoencoders (CVAE), coupled with a one-class support vector machine (OC-SVM), identified the anomaly even when the OMA exhibited limited effectiveness. Moreover, the machine learning procedure minimizes human interaction during the damage detection process.
MoreTranslated text
Key words
SHM,Masonry infill,Anomaly detection,OMA,AI,Neural network
PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Try using models to generate summary,it takes about 60s
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Related Papers
2011
被引用223 | 浏览
2016
被引用84 | 浏览
2018
被引用33 | 浏览
2019
被引用13 | 浏览
2019
被引用18 | 浏览
2018
被引用67 | 浏览
2021
被引用20 | 浏览
2020
被引用11 | 浏览
2021
被引用13 | 浏览
2022
被引用16 | 浏览
2023
被引用13 | 浏览
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
去 AI 文献库 对话