WeChat Mini Program
Old Version Features

OneSparse: A Unified System for Multi-index Vector Search

WWW 2024(2024)

Cited 1|Views46
Abstract
Multi-index vector search has become the cornerstone for many applications, such as recommendation systems. Efficient search in such a multi-modal hybrid vector space is challenging since no single index design performs well for all kinds of vector data. Existing approaches to processing multi-index hybrid queries either suffer from algorithmic limitations or processing inefficiency. In this paper, we propose OneSparse, a unified multi-vector index query system that incorporates multiple posting-based vector indices, which enables highly efficient retrieval of multi-modal data-sets. OneSparse introduces a novel multi-index query engine design of inter-index intersection push-down. It also optimizes the vector posting format to expedite multi-index queries. Our experiments show OneSparse achieves more than 6x search performance improvement while maintaining comparable accuracy. OneSparse has already been integrated into Microsoft online web search and advertising systems with 5x+ latency gain for Bing web search and 2.0% Revenue Per Mille (RPM) gain for Bing sponsored search.
More
Translated text
PDF
Bibtex
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined