WeChat Mini Program
Old Version Features

UAV-Enabled Mobile RAN and RF-Energy Transfer Protocol for Enabling Sustainable IoT in Energy-Constrained Networks

IEEE Transactions on Green Communications and Networking(2024)

Indian Inst Informat Technol Allahabad

Cited 0|Views6
Abstract
This article introduces a novel approach for Unmanned Aerial Vehicles (UAV) assisted wireless power transfer (WPT) within a Radio Access Network (RAN) provisioned Internet of Things (IoT) network. The goal is to efficiently charge scattered IoT Nodes (INs) within their respective energy deadlines. The proposed methodology combines the concepts of Radio Frequency Energy Transfer (RFET) zones, K-means clustering, and Ant Colony Optimization (ACO) to optimize the charging process. Initially, RFET zones are formed around the INs, and K-means clustering is applied to group nodes based on their spatial proximity and energy requirements. Subsequently modified ACO algorithm is employed to construct efficient paths for UAVs to visit these clusters. This is achieved by taking into account several aspects such as node deadlines and UAV capacity, thereby assuring the timely and efficient transmission of energy.After comparative analysis with EUP-ACS and IA-DRL, the proposed algorithm achieves a substantial reduction of 22.22% and 36.36% respectively in UAV usage, while also exhibiting significant improvements in RFET zones, energy efficiency, and survival rate, confirming its effectiveness in enhancing charging performance, reducing energy waste, and meeting deadlines.
More
Translated text
Key words
Radio frequency,Autonomous aerial vehicles,Internet of Things,Energy exchange,Path planning,Energy consumption,Optimization,UAV,ant colony optimization,energy efficiency,radio access networks,radio frequency
求助PDF
上传PDF
Bibtex
收藏
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined