Optimizing Operational Efficiency in Physically Based Landslide Forecasting Models: a Multi-Criterial Parameterization Approach in Evaluating Slope Stability Risk Scenarios - a Case Study in Florence
openalex(2024)
Abstract
Italy faces significant vulnerability to landslides, necessitating reliable forecasting models for effective property and population protection. These models must not only guarantee high accuracy but also facilitate easy integration into early warning systems for civil protection. Physically based landslide forecasting models meticulously replicate the triggering mechanism of shallow landslides. These models employ numerous input parameters interconnected through complex mathematical relationships to assess the probability of landslide occurrences. Despite their precision, these techniques encounter challenges in spatializing geotechnical and hydrogeological parameters across extensive areas, restricting their application to slope-scale assessments. Additionally, the output of these models, presented as probability maps, lacks immediate utility for civil protection purposes, where a risk definition would be more operationally advantageous. This study aims to address this gap by analyzing the optimal criterion for spatializing input data of physical models for regional-scale application. The goal is to develop a procedure that transforms model outcomes into readily usable risk scenarios. The study focuses on the Metropolitan City of Florence, leveraging a richly populated database of geotechnical and hydrogeological parameters. The selected model, HIRESSS (High-Resolution Slope Stability Simulator), simulates events occurring from January to March 2016, encompassing eight reported landslide events. Through p-value analysis derived from statistical hypothesis testing, the study explores two criteria for parameterizing geotechnical and hydrological variables: a lithological criterion and one based on pedological-landscape units. This dual approach aims to consider both the lithological origin of soils and the impact of surface erosive processes on the spatial variability of input parameters. The study employs an innovative GIS-based procedure, integrating field surveys and morphometric parameters, to connect landslide probability maps with vulnerability and elements at risk, ultimately determining a risk scenario for the catchment area of the Cesto stream (southeast of Florence). The analysis highlights the mixed criterion as the most supported spatialization approach, incorporating lithological factors for cohesion and friction angle and pedological-landscape criteria for hydraulic conductivity, soil unit weight, and porosity. Back-analysis validation reaffirms the model's high predictive capability with the adopted mixed-criterial parametrization. The results align with our understanding of landslide triggering mechanisms, particularly sensitive to cohesion and slope gradient. The study concludes with a GIS-based risk analysis, providing impact scenarios for identified exposed elements. This final product proves instrumental for both prevention and emergency management. Once calibrated, the developed procedure holds potential for automation and replication in other study areas, offering a scalable solution for landslide risk assessment and mitigation.
MoreTranslated text
Key words
GIS-based Modeling,Susceptibility Mapping
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined