WeChat Mini Program
Old Version Features

Towards Universal Unfolding of Detector Effects in High-Energy Physics Using Denoising Diffusion Probabilistic Models

arXiv ยท Data Analysis, Statistics and Probability

Cited 0|Views14
Abstract
Correcting for detector effects in experimental data, particularly through unfolding, is critical for enabling precision measurements in high-energy physics. However, traditional unfolding methods face challenges in scalability, flexibility, and dependence on simulations. We introduce a novel approach to multidimensional object-wise unfolding using conditional Denoising Diffusion Probabilistic Models (cDDPM). Our method utilizes the cDDPM for a non-iterative, flexible posterior sampling approach, incorporating distribution moments as conditioning information, which exhibits a strong inductive bias that allows it to generalize to unseen physics processes without explicitly assuming the underlying distribution. Our results highlight the potential of this method as a step towards a "universal" unfolding tool that reduces dependence on truth-level assumptions, while enabling the unfolding of a wide range of measured distributions with improved adaptability and accuracy.
More
Translated text
PDF
Bibtex
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined