Identifying Disulfidptosis Subtypes in Hepatocellular Carcinoma Through Machine Learning and Preliminary Exploration of Its Connection with Immunotherapy
Cancer Cell International(2024)
Third Xiangya Hospital of Central South University
Abstract
Hepatocellular carcinoma (HCC) is a highly prevalent and deadly cancer, with limited treatment options for advanced-stage patients. Disulfidptosis is a recently identified mechanism of programmed cell death that occurs in SLC7A11 high-expressing cells due to glucose starvation-induced disintegration of the cellular disulfide skeleton. We aimed to explore the potential of disulfidptosis, as a prognostic and therapeutic marker in HCC. We classified HCC patients into two disulfidptosis subtypes (C1 and C2) based on the transcriptional profiles of 31 disulfrgs using a non-negative matrix factorization (NMF) algorithm. Further, five genes (NEIL3, MMP1, STC2, ADH4 and CFHR3) were screened by Cox regression analysis and machine learning algorithm to construct a disulfidptosis scoring system (disulfS). Cell proliferation assay, F-actin staining and PBMC co-culture model were used to validate that disulfidptosis occurs in HCC and correlates with immunotherapy response. Our results suggests that the low disulfidptosis subtype (C2) demonstrated better overall survival (OS) and progression-free survival (PFS) prognosis, along with lower levels of immunosuppressive cell infiltration and activation of the glycine/serine/threonine metabolic pathway. Additionally, the low disulfidptosis group showed better responses to immunotherapy and potential antagonism with sorafenib treatment. As a total survival risk factor, disulfS demonstrated high predictive efficacy in multiple validation cohorts. We demonstrated the presence of disulfidptosis in HCC cells and its possible relevance to immunotherapeutic sensitization. The present study indicates that novel biomarkers related to disulfidptosis may serve as useful clinical diagnostic indicators for liver cancer, enabling the prediction of prognosis and identification of potential treatment targets.
MoreTranslated text
Key words
Hepatocellular carcinoma,Disulfidptosis,Molecular typing,Survival prognosis,Immunotherapy
PDF
View via Publisher
AI Read Science
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined