MOSBY Enables Multi-Omic Inference and Spatial Biomarker Discovery from Whole Slide Images
Scientific Reports(2024)
Abstract
The utility of deep neural nets has been demonstrated for mapping hematoxylin-and-eosin (H&E) stained image features to expression of individual genes. However, these models have not been employed to discover clinically relevant spatial biomarkers. Here we develop MOSBY ( M ulti- Omic translation of whole slide images for S patial B iomarker discover Y ) that leverages contrastive self-supervised pretraining to extract improved H&E whole slide images features, learns a mapping between image and bulk omic profiles (RNA, DNA, and protein), and utilizes tile-level information to discover spatial biomarkers. We validate MOSBY gene and gene set predictions with spatial transcriptomic and serially-sectioned CD8 IHC image data. We demonstrate that MOSBY-inferred colocalization features have survival-predictive power orthogonal to gene expression, and enable concordance indices highly competitive with survival-trained multimodal networks. We identify and validate 1) an ER stress-associated colocalization feature as a chemotherapy-specific risk factor in lung adenocarcinoma, and 2) the colocalization of T effector cell vs cysteine signatures as a negative prognostic factor in multiple cancer indications. The discovery of clinically relevant biologically interpretable spatial biomarkers showcases the utility of the model in unraveling novel insights in cancer biology as well as informing clinical decision-making.
MoreTranslated text
Key words
Spatial Profiling,Feature Extraction
PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Try using models to generate summary,it takes about 60s
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Related Papers
2008
被引用2978 | 浏览
2010
被引用1193 | 浏览
2011
被引用116 | 浏览
2013
被引用287 | 浏览
2018
被引用4472 | 浏览
2018
被引用1274 | 浏览
2018
被引用1944 | 浏览
2016
被引用2040 | 浏览
2016
被引用60 | 浏览
2020
被引用288 | 浏览
2021
被引用36 | 浏览
2022
被引用204 | 浏览
2023
被引用54 | 浏览
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
去 AI 文献库 对话