WeChat Mini Program
Old Version Features

Critical Biomarkers for Responsive Deep Brain Stimulation and Responsive Focal Cortex Stimulation in Epilepsy Field

Zhikai Yu, Binghao Yang,Penghu Wei, Hang Xu,Yongzhi Shan,Xiaotong Fan,Huaqiang Zhang,Changming Wang, Jingjing Wang,Shan Yu,Guoguang Zhao

Fundamental Research(2024)

Department of Neurosurgery

Cited 0|Views9
Abstract
To derive critical signal features from intracranial electroencephalograms of epileptic patients in order to design instructions for feedback-type electrical stimulation systems. The Detrended Fluctuation Analysis (DFA) exponent is chosen as the classification exponent, and the disparities between indicators representing distinct seizure states and the classification efficacy of rudimentary machine learning models are computed. The DFA exponent exhibited a statistically significant variation among the pre-ictal, ictal period, and post-ictal stages. The Linear Discriminant Analysis model demonstrates the highest accuracy among the three basic machine learning models, whereas the Naive Bayesian model necessitates the least amount of computational and storage space. The set of DFA exponents is employed as an intermediary variable in the machine learning process. The resultant model possesses the capability to function as a feedback trigger program for electrical stimulation systems of the feedback variety, specifically within the domain of neural modulation in epilepsy.
More
Translated text
Key words
Biomarker,Critical state,Feedback electrical stimulation,Epilepsy,Brain computer interface
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined