Automated Segmentation of After-Loaded Metal Source Applicators in Cervical Cancer Treatment Using U-Net: Enhancing Efficiency and Accuracy in Treatment Planning
IEEE ACCESS(2024)
关键词
Applicators,Training,Cervical cancer,Computed tomography,Biomedical imaging,Planning,Metals,Medical treatment,Deep learning,after-loaded treatment planning,deep learning,U-Net,automatic segmentation
AI 理解论文
溯源树
样例

生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要