WeChat Mini Program
Old Version Features

Biomarker Identification by Interpretable Maximum Mean Discrepancy.

Bioinform(2024)

Swiss Fed Inst Technol

Cited 0|Views20
Abstract
MOTIVATION:In many biomedical applications, we are confronted with paired groups of samples, such as treated versus control. The aim is to detect discriminating features, i.e. biomarkers, based on high-dimensional (omics-) data. This problem can be phrased more generally as a two-sample problem requiring statistical significance testing to establish differences, and interpretations to identify distinguishing features. The multivariate maximum mean discrepancy (MMD) test quantifies group-level differences, whereas statistically significantly associated features are usually found by univariate feature selection. Currently, few general-purpose methods simultaneously perform multivariate feature selection and two-sample testing. RESULTS:We introduce a sparse, interpretable, and optimized MMD test (SpInOpt-MMD) that enables two-sample testing and feature selection in the same experiment. SpInOpt-MMD is a versatile method and we demonstrate its application to a variety of synthetic and real-world data types including images, gene expression measurements, and text data. SpInOpt-MMD is effective in identifying relevant features in small sample sizes and outperforms other feature selection methods such as SHapley Additive exPlanations and univariate association analysis in several experiments. AVAILABILITY AND IMPLEMENTATION:The code and links to our public data are available at https://github.com/BorgwardtLab/spinoptmmd.
More
Translated text
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined