Dominance and Rarity in Tree Communities Across the Globe: Patterns, Predictors and Threats
Global Ecology and Biogeography(2024)
ETH Zurich Swiss Fed Inst Technol | Univ Zurich | Wageningen Univ & Res | Bot Gardens Conservat Int | Nat Biodivers Ctr | Purdue Univ | Univ Minnesota | Univ Lleida | Food & Agr Org United Nat | Lakehead Univ | Manaaki Whenua Landcare Res | Tech Univ Munich | Univ Quebec | GIP ECOFOR | Univ Montpellier | Univ Liege | Free Univ Bolzano | WSL | Univ Felix Houphouet Boigny | Univ Florida | Tecnol Costa Rica TEC | Univ Nacl Abierta Distancia | Field Museum Nat Hist | Univ Calif Los Angeles | Univ Gottingen | Norwegian Inst Bioecon Res NIBIO | Museo Hist Nat Noel Kempff Mercado | European Commiss | Herbario Univ PORT | Univ Leeds | Univ Fed Acre | Natl Acad Sci | United Nation Framework Convent Climate Change | Mbarara Univ Sci & Technol | Univ Ghent | Stefan Cel Mare Univ Suceava | Univ Sao Paulo | Bavarian State Inst Forestry | Martin Luther Univ Halle Wittenberg | Univ Firenze | Tomsk State Univ | Inst Forestry | Univ Connecticut | IFER | Duke Univ | Univ Missouri | Univ Estadual Campinas | Univ Cambridge | Andes Amazon Biodivers Program | Univ Juarez Estado Durango | Coll St Rose | West Virginia Univ | Concordia Univ | Univ Reg Blumenau | Univ Maryland | Natl Inst Amazonian Res | Czech Acad Sci | Herbier Natl Gabon CENAREST | Univ Arizona | Queensland Herbarium | Univ Natl Agr | Queen Mary Univ London | Museu Paraense Emilio Goeldi | Univ Exeter | Nat Resources Inst Finland Luke | Univ Bern | Forest Res Inst Malaysia | Yale Univ | Royal Bot Garden Edinburgh | Univ Oxford | Univ Bayreuth | Univ Sunshine Coast | Royal Soc Protect Birds | Inst Invest Amazonia Peruana | Stellenbosch Univ | Korea Forest Promot Inst | Tokyo Univ Agr | Polish Acad Sci | Univ Warsaw | Univ Copenhagen | Univ Bristol | Bauman Moscow State Tech Univ | Smithsonian Trop Res Inst | Colorado Mesa Univ | Univ South Australia | Dr Hari Singh Gour Vishwavidyalaya | Seoul Natl Univ | Kyoto Univ | Univ Hamburg | Estonian Univ Life Sci | Int Inst Appl Syst Anal | Qingdao Agr Univ | Russian Acad Sci | AgroParisTech | Univ Estado Mato Grosso | Coll African Wildlife Management | Univ Nacl Autonoma Mexico | Univ Tolima | Colegio Profes Forest Cochabamba | Warsaw Univ Life Sci | Jardin Bot Missouri | Univ Estatal Amazon | US Forest Serv | Pondicherry Univ | UNPA | Western Sydney Univ | Inst Nacl de Pesquisas da Amazonia | Jardin Bot Medellin | Univ Nacl Amazonia Peruana | Fdn Con Vida & Corp COL TREE | Univ Trento | Boise State Univ | Univ Florence | Info Flora | Cent Univ Jharkhand | Univ Mayor | Univ Freiburg | Forest Res Inst Zvolen | Univ Lorraine | Univ La Serena | Guyana Forestry Commiss | Univ Brunei Darussalam | Univ Fed Rio Grande do Norte | Forest Res Inst | Aarhus Univ | Czech Univ Life Sci | Wildlife Conservat Soc | Iwokrama Int Ctr Rainforest Conservat & Dev IIC | Ural State Forest Engn Univ | Pontificia Univ Catolica Ecuador | CSIC | Wageningen Univ | Vietnamese Acad Forest Sci | Stanford Univ | CAS | Univ Stellenbosch | Karlsruhe Inst Technol | Ctr Agr Res Suriname CELOS | Tropenbos Int | Coordinat Ctr Environm Projects | Beijing Forestry Univ | Natl Polytech Inst INP HB
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance

被引用0