WeChat Mini Program
Old Version Features

Development and Validation of Diagnosis Model for Inflammatory Bowel Diseases Based on a Serologic Biomarker Panel: A Decision Tree Model Study

Arab Journal of Gastroenterology(2024)

Department of Clinical Laboratory

Cited 0|Views8
Abstract
Background and study aims Currently, an increasing amount of experimental data is available on newly discovered biomarkers in inflammatory bowel diseases (IBD), but the role of these biomarkers is often questionable due to their limited sensitivity. Therefore, this study aimed to build a diagnostic tool incorporating a panel of serum biomarkers into a computational algorithm to identify patients with IBD and differentiate those with Crohn’s disease (CD) from those with ulcerative colitis (UC). Patients and methods We studied sera from 192 CD patients, 118 UC patients, 60 non-IBD controls and 60 healthy controls. Indirect immunofluorescence (IIF) assays were utilized to determine several serum biomarkers previously associated with IBD, and the decision tree algorithm was used to construct the diagnosis model. Performances of models were evaluated by prediction accuracy, precision, AUC and Matthews’s correlation coefficient (MCC). The “Inflammatory Bowel Disease Multi-omics Database (IBDMDB)” cohorts were used to validate the model as external validation set. Results The prediction rates were determined and compared for decision tree models after each data was developed using C5.0, C&RT, QUEST and CHAID. The C5.0 and CHAID algorithms, which ranked top for the prediction rate in the IBD vs. non-IBD model and the CD vs. UC model, respectively, were utilized for final pattern analysis. The final decision tree model achieved higher classification accuracy than the approach based on conservative marker combinations (sensitivity 75.0% vs. 79.5%, specificity 93.8% vs. 78.3% for differentiating IBD from non-IBD; and sensitivity 84.3% vs. 73.4%, specificity 92.5% vs. 54.9% for differentiating CD from UC, respectively). The model prediction consistency was 93% (28/30) in the external validation set. Conclusion The decision-tree-based approach used in this study, based on serum biomarkers, has shown to be a valid and useful approach to identifying IBD and differentiating CD from UC.
More
Translated text
Key words
Inflamatory bowel diseases,Ulcerative colitis,Crohn’s disease,Biomarker based algorithms,Decision tree model
求助PDF
上传PDF
Bibtex
收藏
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined