小麦重要农艺性状的QTL定位与候选基因分析
chinaxiv(2025)
Abstract
小麦是世界三大主粮之一,重要农艺性状的QTL定位和候选基因分析有利于高产稳产新品种培育。为进一步揭示小麦农艺性状变异及育种改良,该研究选用小麦品种‘蜀麦969’与‘蜀麦830’构建了包含89个株系的重组自交系(F7)群体,利用简化基因组测序技术对重组自交系及其亲本进行了基因分型,结合农艺性状表型数据,采用完备区间作图方法鉴定了控制株高、穗下节长、芒长、穗长、旗叶长、旗叶宽、分蘖数、有效分蘖数和千粒重、粒长、粒宽、籽粒表面积的QTL位点。结果表明:(1)鉴定到27个农艺性状相关的QTL,分布在13个染色体上,可解释表型变异的3.74%~26.70%,其中,7B染色体608.58~609.12 Mb区间的QTL位点同时控制株高和穗下节长,这一位点在2个年份均被检测到;5A染色体519.94~528.83 Mb区间的QTL同时控制分蘖数和有效分蘖数,而5D染色体437.38~439.30 Mb区间的QTL同时控制千粒重和籽粒表面积;7个QTL位点与前人报道的位置相同。(2)在QTL定位区间开展功能基因预测,成功预测2个株高、4个分蘖和3个千粒重的候选基因,其中2个株高候选基因分别是编码富含亮氨酸重复序列受体样蛋白激酶家族蛋白和赤霉素2-氧化酶的基因;4个分蘖候选基因分别是编码生长素反应蛋白、RING/U-box超家族蛋白和2个F-box蛋白的基因;3个千粒重候选基因分别是编码富含亮氨酸重复序列受体样蛋白激酶家族蛋白、蛋白激酶家族蛋白和叶绿素a-b结合蛋白的基因。该研究鉴定的小麦重要农艺性状QTL位点,既为候选基因精细定位及克隆提供了依据,也可助力小麦新品种培育。
More求助PDF
上传PDF
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined