WeChat Mini Program
Old Version Features

Doping Dependence of Spin-Momentum Locking in Bismuth-Based High-Temperature Cuprate Superconductors

COMMUNICATIONS MATERIALS(2024)

Univ Calif Berkeley

Cited 0|Views4
Abstract
Non-zero spin orbit coupling has been reported in several unconventional superconductors due to the absence of inversion symmetry breaking. This contrasts with cuprate superconductors, where such interaction has been neglected for a long time. The recent report of a non-trivial spin orbit coupling in overdoped Bi2212 cuprate superconductor, has re-opened an old debate on both the source and role of such interaction and its evolution throughout the superconducting dome. Using high-resolution spin- and angle-resolved photoemission spectroscopy, we reveal a momentum-dependent spin texture throughout the hole-doped side of the superconducting phase diagram for single- and double-layer bismuth-based cuprates. The universality of the reported effect among different dopings and the disappearance of spin polarization upon lead substitution, suggest a common source. We argue that local structural fluctuations of the CuO planes and the resulting charge imbalance may cause local inversion symmetry breaking and spin polarization, which might be crucial for understanding cuprates physics.
More
Translated text
PDF
Bibtex
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined