Three-Dimensional Integrated Synaptic Devices Based on a Silver-Cluster Conduction Mechanism with High Thermostability.
ACS Applied Materials & Interfaces(2024)
Abstract
During the operation of synaptic devices based on traditional conductive filament (CF) models, the formation and dissolution of CFs are usually uncertain. Moreover, when the device is operated for a long time, the CFs may dissolve due to both the Joule heat generated by the device itself and the thermal coupling between the devices. These problems seriously reduce the reliability and stability of the synaptic device. Here, an artificial synapse device based on polyimide-molybdenum disulfide quantum dot (MoS2 QD) nanocomposites is presented. Research has shown that MoS2 QDs doped into the active layer can effectively induce the reduction of Ag ions into Ag atoms, leading to the formation of Ag clusters and thereby achieving control over the growth of the CFs. Therefore, the device is capable of stably realizing various basic synaptic functions. Moreover, the long-term potentiation/long-term depression (LTP/LTD) of this device shows good linearity. In addition, due to the change in the shape of the CFs, the highly integrated devices with a three-dimensional (3D) stacked structure can operate normally even in a high-temperature environment of 110 degrees C. Finally, the synaptic characteristics of the devices on learning and inference tests show that their recognition rates are approximately 90.75% (room temperature) and 90.63% (110 degrees C).
MoreTranslated text
Key words
three-dimensional stacked,synaptic devices,high thermal stability,molybdenumdisulfide quantum dots,Ag cluster-type filaments,neuromorphic computing
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined