Cmf-transformer: Cross-Modal Fusion Transformer for Human Action Recognition
Machine Vision and Applications(2024)
University of Electronic Science and Technology of China
Abstract
In human action recognition, both spatio-temporal videos and skeleton features alone can achieve good recognition performance, however, how to combine these two modalities to achieve better performance is still a worthy research direction. In order to better combine the two modalities, we propose a novel Cross-Modal Transformer for human action recognition—CMF-Transformer, which effectively fuses two different modalities. In spatio-temporal modality, video frames are used as inputs and directional attention is used in the transformer to obtain the order of recognition between different spatio-temporal blocks. In skeleton joint modality, skeleton joints are used as inputs to explore more complete correlations in different skeleton joints by spatio-temporal cross-attention in the transformer. Subsequently, a multimodal collaborative recognition strategy is used to identify the respective features and connectivity features of two modalities separately, and then weight the identification results separately to synergistically identify target action by fusing the features under the two modalities. A series of experiments on three benchmark datasets demonstrate that the performance of CMF-Transformer in this paper outperforms most current state-of-the-art methods.
MoreTranslated text
Key words
Action recognition,Transformer,Skeleton-based action recognition,Cross-modal
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined