WeChat Mini Program
Old Version Features

VarKFaceNet:An Efficient Variable Depthwise Convolution Kernels Neural Network for Lightweight Face Recognition

Qinghua Ma,Peng Zhang,Min Cui

IEEE Access(2024)

North Univ China

Cited 0|Views2
Abstract
We revisit the design of convolutional kernels in lightweight convolutional neural networks, and inspired by the recent advances in RepLKNet, we design a Variable Kernel Convolutional Network module VarKNet, which solves the problem of the imbalance between depthwise convolution and pointwise convolution in the case of depthwise separable convolution when the network width is large, and enriches the model’s receptive field. The VarKNet module adopts a multi-branch structure during training and is re-parameterized and fused into a single-path structure during inference to maintain the strong expressive ability of the model and improve the inference speed. In order to further enhance the information exchange between channels, VarKNet adds channel shuffling in the fused branches. Built on VarKNet, we designed a large-scale face recognition network VarKFaceNet. VarKFaceNet achieved A great achievement of 99.5% accuracy on the LFW dataset with 0.7M parameters and 0.24 GFLOPS. At the same time, the measured speed on the NVIDIA Jetson Nano platform is 159 times, 4.2 times, and 2.4 times that of ResNet-50, EfficientNet, and MobileFaceNet, respectively. VarKFaceNet excels in balancing speed and accuracy and is quite suitable for embedded devices with limited resources.
More
Translated text
Key words
Convolution,Kernel,Face recognition,Feature extraction,Convolutional neural networks,Periodic structures,Guidelines,local features,multi-scale,lightweight network
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined