WeChat Mini Program
Old Version Features

Driver Gene Expression Clustering Model for Prognostic Risk Estimation Using Cancer Genomic Data

Sin-Hua Moi,Yu-Da Lin, Yi-Ling Chen,Chao-Ming Hung, Shin-Jiun Tsai, Wei-Hong Cheng

2024 IEEE 48TH ANNUAL COMPUTERS, SOFTWARE, AND APPLICATIONS CONFERENCE, COMPSAC 2024(2024)

Cited 0|Views5
Abstract
Breast cancer (BRCA) and head and neck cancer (HNSC) represent significant global health challenges, underscoring the critical need for accurate prognosis in these patient populations. Tumor suppressor genes (TSGs) and oncogenes (OCGs) play pivotal roles in cancer progression, yet exhibit low mutation rates in affected individuals. Consequently, distinct omics patterns are necessary for estimating prognosis risk in patients harboring wild-type OCGs and TSGs. This study investigates mRNA expression of driver genes across TSG/OCG mutant subgroups and employs hierarchical clustering to identify mRNA expression patterns associated with higher prognosis risk. Data from both cancer cohorts were analyzed using agglomerative hierarchical clustering, revealing survival discrepancies between clusters in OCG/TSG-Wild subgroups. Our results emphasize the potential utilizing driver gene expression for prognostic risk estimation in BRCA and HNSC patients with wild-type OCGs and TSGs.
More
Translated text
Key words
genomics,cancer,hierarchical clustering,prognosis,risk estimation
求助PDF
上传PDF
Bibtex
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper

要点】:本研究提出了一个基于肿瘤抑制基因和致癌基因表达模式的聚类模型,用于预测乳腺癌和头颈癌患者带有野生型基因的预后风险,揭示了不同聚类之间生存率的显著差异。

方法】:研究利用聚合层次聚类方法对肿瘤基因组数据中的驱动基因mRNA表达进行分析,根据表达模式将患者分组。

实验】:通过分析乳腺癌(BRCA)和头颈癌(HNSC)队列数据,发现OCG/TSG-Wild亚组中不同聚类的生存率差异,具体数据集名称未在摘要中提及。