WeChat Mini Program
Old Version Features

SOH Early Prediction of Lithium-ion Batteries Based on Voltage Interval Selection and Features Fusion

ENERGY(2024)

Yancheng Inst Technol

Cited 18|Views11
Abstract
- Accurate state of health (SOH) of batteries is a crucial prerequisite for ensuring the safety and stable operation of electric vehicles. However, existing conventional prediction methods do not consider the influence of early-stage capacity variations on full-cycle SOH with extensive test data. This paper develops a SOH early prediction method of lithium-ion batteries based on voltage interval selection and features fusion. To identify the battery SOH curves with high similarity under identical charge-discharge conditions, a double correlation based early-stage SOH similarity analysis method is presented. To minimize the amount of voltage training data collected during feature extraction, a voltage interval selection method considering sampling time and features correlation is introduced. Meanwhile, a feature fusion method combining entropy weight and correlation factor is used to reduce the impact of redundant health feature information. To address the problems of low accuracy and computational inefficiency using the least squares support vector machine (LSSVM) model, a grey wolf optimizer-LSSVM-adaptive boosting model is developed for battery SOH prediction. The experimental results show that the coefficients of determination remain above 0.98, indicating high SOH prediction accuracy using the developed method. Compared to other methods, the mean absolute errors based on the developed method are maintained below 1.5%.
More
Translated text
Key words
Lithium-ion batteries,State of health,Feature fusion,Least squares support vector machine
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined