WeChat Mini Program
Old Version Features

An Integrated Radiopathomics Machine Learning Model to Predict Pathological Response to Preoperative Chemotherapy in Gastric Cancer

ACADEMIC RADIOLOGY(2025)

Qingdao Univ

Cited 0|Views8
Abstract
Rationale and Objectives Accurately predicting the pathological response to chemotherapy before treatment is important for selecting the appropriate treatment groups, formulating individualized treatment plans, and improving the survival rates of patients with gastric cancer (GC). Methods We retrospectively enrolled 151 patients diagnosed with GC who underwent preoperative chemotherapy and surgical resection at the Affiliated Hospital of Qingdao University between January 2015 and June 2023. Both pretreatment-enhanced computer technology images and whole slide images of pathological hematoxylin and eosin-stained sections were available for each patient. The image features were extracted and used to construct an ensemble radiopathomics machine learning model. In addition, a nomogram was developed by combining the imaging features and clinical characteristics. Results In total, 962 radiomics and 999 pathomics signatures were extracted from 106 patients in the training cohort. A fusion radiopathomics model was constructed using 13 radiomics and 5 pathomics signatures. The fusion model showed favorable performance compared to single-omics models, with an area under the curve (AUC) of 0.789 in the validation cohort. Moreover, a combined radiopathomics nomogram (RPN) was developed based on radiopathomics features and the Borrmann type, which is a classification method for advanced GC according to tumor growth pattern and gross morphology. The RPN showed superior predictive performance in the training (AUC 0.880) and validation cohorts (AUC 0.797). The decision curve analysis showed that RPN could provide favorable clinical benefits to patients with GC. Conclusions RPN was able to predict the pathological response to preoperative chemotherapy with high accuracy, and therefore provides a novel tool for personalized treatment of GC.
More
Translated text
Key words
Gastric cancer,Machine learning,Preoperative chemotherapy,Tumor regression grade,Computed tomography images,Histopathological images
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined