Artificial Intelligence with Mass Spectrometry-Based Multimodal Molecular Profiling Methods for Advancing Therapeutic Discovery of Infectious Diseases
Pharmacology & Therapeutics(2024)
School of Chinese Medicine
Abstract
Infectious diseases, driven by a diverse array of pathogens, can swiftly undermine public health systems. Accurate diagnosis and treatment of infectious diseases—centered around the identification of biomarkers and the elucidation of disease mechanisms—are in dire need of more versatile and practical analytical approaches. Mass spectrometry (MS)-based molecular profiling methods can deliver a wealth of information on a range of functional molecules, including nucleic acids, proteins, and metabolites. While MS-driven omics analyses can yield vast datasets, the sheer complexity and multi-dimensionality of MS data can significantly hinder the identification and characterization of functional molecules within specific biological processes and events. Artificial intelligence (AI) emerges as a potent complementary tool that can substantially enhance the processing and interpretation of MS data. AI applications in this context lead to the reduction of spurious signals, the improvement of precision, the creation of standardized analytical frameworks, and the increase of data integration efficiency. This critical review emphasizes the pivotal roles of MS based omics strategies in the discovery of biomarkers and the clarification of infectious diseases. Additionally, the review underscores the transformative ability of AI techniques to enhance the utility of MS-based molecular profiling in the field of infectious diseases by refining the quality and practicality of data produced from omics analyses. In conclusion, we advocate for a forward-looking strategy that integrates AI with MS-based molecular profiling. This integration aims to transform the analytical landscape and the performance of biological molecule characterization, potentially down to the single-cell level. Such advancements are anticipated to propel the development of AI-driven predictive models, thus improving the monitoring of diagnostics and therapeutic discovery for the ongoing challenge related to infectious diseases.
MoreTranslated text
Key words
Infectious diseases,Mass spectrometry,Molecular profiling,Artificial intelligence,Storm+,Therapeutic discovery
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined