WeChat Mini Program
Old Version Features

Non-differential Misclassification of Outcome under (Near)-Perfect Specificity: a Simulation Study.

American journal of epidemiology(2025)

The Robert Larner

Cited 0|Views1
Abstract
Mismeasurement of a dichotomous outcome yields an unbiased risk ratio estimate when there are no false positive cases (perfect specificity) and when sensitivity is non-differential with respect to exposure status. In studies where these conditions are expected, quantitative bias analysis may be considered unnecessary. We conducted a simulation study to explore the robustness of this special case to small departures from perfect specificity and stochastic departures from non-differential sensitivity. We observed substantial bias of the risk ratio with specificity values as high at 99.8%. The magnitude of bias increased directly with the true underlying risk ratio and was markedly stronger at lower baseline risk. Stochastic departure from non-differential sensitivity also resulted in substantial bias in most simulated scenarios; downward bias prevailed when sensitivity was higher among unexposed compared with exposed, and upward bias prevailed when sensitivity was higher among exposed compared with unexposed. Our results show that seemingly innocuous departures from perfect specificity (e.g., 0.2%) and from non-differential sensitivity can yield substantial bias of the risk ratio under outcome misclassification. We present a web tool permitting easy exploration of this bias mechanism under user-specifiable study scenarios.
More
Translated text
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined