WeChat Mini Program
Old Version Features

基于电子问卷调查分析河北省住培急诊专业技能培训中教师和学员的认知差异

吕宝谱, 刘亮, 肖浩, 宫玉,孟庆冰, 高恒波, 田英平,姚冬奇

Chinese General Practice 중국전과의학(2024)

Cited 0|Views7
Abstract
背景 住院医师规范化培训是培养高素质临床医师队伍的关键,急诊医学科是救治急危重症患者的前沿阵地,更是培养优秀临床住院医师的重要训练营。医学技能培训是住院医师规范化培训的重要内容,急诊核心技能培训涵盖的项目较多,教师和学员对具体培训项目的认知存在差异,会影响技能培训的效率和质量。目的 调查分析河北省住院医师规范化培训急诊专业技能培训教师和学员对培训项目的认知差异。方法 2021 年 10 月,选取来自河北省 15 家急诊规培基地,准备参加河北省住院医师规范化培训技能大赛的教师和学员共 103 名作为调查对象,其中教师 37 名、学员 66 名。依据《临床技能操作细化流程及评分标准》,对 13 个急诊核心技能培训项目,按细化流程操作步骤制定电子调查问卷,进行“难易度”和“操作时遗漏情况”评分调查。结果 教师和学员在“难易度”方面,有 7 个项目(53.85%):心电图采集术、动脉穿刺术、腹腔穿刺术、单人心肺复苏术、中心静脉穿刺术、气管插管术、三腔两囊管置入术,其中 25 个步骤(16.45%)的认知存在差异,教师的“难易度”认知评分低于学员(P<0.05)。教师和学员在“操作时遗漏情况”方面,对 9 个项目(69.23%):心电图采集术、腹腔穿刺术、单人心肺复苏术、中心静脉穿刺术、气管插管术、三腔两囊管置入术、腰椎穿刺术、无创通气术、胸腔穿刺术,其中 24 个步骤(15.79%)认知存在差异,教师的“操作时遗漏情况”认知评分低于学员(P<0.05);其余 3 个培训项目:环甲膜穿刺术、同步电复律术、骨髓穿刺术,教师和学员在操作各步骤“难易度”、“操作时遗漏情况”方面的认知差异均无统计学意义(P>0.05)。结论 教师和学员对急诊核心技能培训“难易度”和“操作时遗漏情况”方面确实存在差异,一方面可促进临床技能培训课程设置的改进,提高培训效率,为培养高层次、高水平、应用型的医学人才提供方法学基础;另一方面,提示在今后住院医师规范化培训的类似相关研究中,在涉及教师和学员两个群体时,要考虑到二者之间可能存在差异,以期更客观地反映和探究住培相关问题。
More
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined