WeChat Mini Program
Old Version Features

Large Language Model Should Understand Pinyin for Chinese ASR Error Correction

IEEE International Conference on Acoustics, Speech, and Signal Processing(2025)

Cited 0|Views5
Abstract
Large language models can enhance automatic speech recognition systems through generative error correction. In this paper, we propose Pinyin-enhanced GEC, which leverages Pinyi, the phonetic representation of Mandarin Chinese, as supplementary information to improve Chinese ASR error correction. Our approach only utilizes synthetic errors for training and employs the one-best hypothesis during inference. Additionally, we introduce a multitask training approach involving conversion tasks between Pinyin and text to align their feature spaces. Experiments on the Aishell-1 and the Common Voice datasets demonstrate that our approach consistently outperforms GEC with text-only input. More importantly, we provide intuitive explanations for the effectiveness of PY-GEC and multitask training from two aspects: 1) increased attention weight on Pinyin features; and 2) aligned feature space between Pinyin and text hidden states.
More
Translated text
Key words
Large language model,error correction,multitask training
PDF
Bibtex
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined