An Overview of the Burer-Monteiro Method for Certifiable Robot Perception
CoRR(2024)
Abstract
This paper presents an overview of the Burer-Monteiro method (BM), a technique that has been applied to solve robot perception problems to certifiable optimality in real-time. BM is often used to solve semidefinite programming relaxations, which can be used to perform global optimization for non-convex perception problems. Specifically, BM leverages the low-rank structure of typical semidefinite programs to dramatically reduce the computational cost of performing optimization. This paper discusses BM in certifiable perception, with three main objectives: (i) to consolidate information from the literature into a unified presentation, (ii) to elucidate the role of the linear independence constraint qualification (LICQ), a concept not yet well-covered in certifiable perception literature, and (iii) to share practical considerations that are discussed among practitioners but not thoroughly covered in the literature. Our general aim is to offer a practical primer for applying BM towards certifiable perception.
MoreTranslated text
PDF
View via Publisher
AI Read Science
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined