Dual-perspective Multi-Instance Embedding Learning with Adaptive Density Distribution Mining
PATTERN RECOGNITION(2025)
Southwest Petr Univ | Zhejiang Ocean Univ
Abstract
Multi-instance learning (MIL) is a potent framework for solving weakly supervised problems, with bags containing multiple instances. Various embedding methods convert each bag into a vector in the new feature space based on a representative bag or instance, aiming to extract useful information from the bag. However, since the distribution of instances is related to labels, these methods rely solely on the overall perspective embedding without considering the different distribution characteristics, which will conflate the varied distributions of instances and thus lead to poor classification performance. In this paper, we propose the dual-perspective multi-instance embedding learning with adaptive density distribution mining (DPMIL) algorithm with three new techniques. First, the mutual instance selection technique consists of adaptive density distribution mining and discriminative evaluation. The distribution characteristics of negative instances and heterogeneous instance dissimilarity are effectively exploited to obtain instances with strong representativeness. Second, the embedding technique mines two crucial information of the bag simultaneously. Bags are converted into sequence invariant vectors according to the dual-perspective such that the distinguishability is maintained. Finally, the ensemble technique trains a batch of classifiers. The final model is obtained by weighted voting with the contribution of the dual-perspective embedding information. The experimental results demonstrate that the DPMIL algorithm has higher average accuracy than other compared algorithms, especially on web datasets.
MoreTranslated text
Key words
Adaptive density,Dual-perspective embedding,Discriminative information,Ensemble learning,Multi-instance learning (MIL)
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined