Chrome Extension
WeChat Mini Program
Use on ChatGLM

An Advanced High Dimensional Model Representation Approach for Internal Combustion Engine Modeling and Optimization

ENERGY(2024)

Dalian Univ Technol | Nanjing Tech Univ | Univ Cambridge | Natl Univ Singapore

Cited 0|Views3
Abstract
This work introduces an efficient data-driven approach for engine performance modeling and optimization. A highly accurate and robust high-dimensional model representation (HDMR) surrogate model is developed based on the dataset generated from a coupled KIVA4-CHEMKIN II software. The HDMR model is integrated with a multi-objective optimization algorithm, enabling the automatic identification of optimal combustion strategies. Results suggest that the constructed HDMR model is able to accurately predict the engine performance and exhaust gas emissions with negligible CPU costs. Moreover, the model effectively identifies optimal engine operating conditions, leading to enhanced fuel efficiency.
More
Translated text
Key words
High dimension model representation (HDMR),Data driven,Multi-objective optimization,NSGA-III
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Related Papers
K. Karunamurthy,Ayub Ahmed Janvekar, P. L. Palaniappan, V. Adhitya, T. T. K. Lokeswar, J. Harish
2023

被引用24 | 浏览

Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined