数字化设计导航模板辅助儿童肘内翻截骨术的应用研究进展
Chinese Journal of Anatomy and Clinics(2021)
Abstract
目的:总结数字化设计导航模板在儿童肘内翻矫形截骨术中的研究进展。方法:在中国知网、万方数据库、中国生物医学文献数据库和Web of Science、PubMed、EMBASE数据库上进行文献检索,分别以"3D打印""导航模板""数字化""三维重建""矫形""肘内翻"和"3D printing""navigational template""three-dimensional reconstruction""orthopedics""cubitus varus"为中英文关键词,检索2010年1月—2020年4月有关数字化设计导航模板辅助儿童肘内翻矫形截骨术的中英文文献。从数字化设计导航模板在儿童肘内翻的畸形评估、术前模拟、导航模板设计、术后效果、应用优势与局限性等方面进行归纳总结。结果:根据纳入及排除标准,最终纳入35篇文献(英文27篇,中文8篇)。相比传统手术,数字化设计导航模板应用于儿童肘内翻截骨,术前矫形能准确地进行肘部畸形三维评估,使得术中操作与术前模拟一致,可实现个性化矫形,截骨精准、创伤小,但手术成本较高。结论:数字化设计导航模板辅助儿童肘内翻截骨矫形具有较好的手术效果和应用前景。
MoreKey words
Cubitus varus,Orthopedic,Navigation template,Imaging, three-dimensional,Three-dimensional printing
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Related Papers
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper