An Adaptive Parameter Optimization Deep Learning Model for Energetic Liquid Vision Recognition Based on Feedback Mechanism
SENSORS(2024)
Univ Elect Sci & Technol China | Civil Aviat Flight Univ China
Abstract
The precise detection of liquid flow and viscosity is a crucial challenge in industrial processes and environmental monitoring due to the variety of liquid samples and the complex reflective properties of energetic liquids. Traditional methods often struggle to maintain accuracy under such conditions. This study addresses the complexity arising from sample diversity and the reflective properties of energetic liquids by introducing a novel model based on computer vision and deep learning. We propose the DBN-AGS-FLSS, an integrated deep learning model for high-precision, real-time liquid surface pointer detection. The model combines Deep Belief Networks (DBN), Feedback Least-Squares SVM classifiers (FLSS), and Adaptive Genetic Selectors (AGS). Enhanced by bilateral filtering and adaptive contrast enhancement algorithms, the model significantly improves image clarity and detection accuracy. The use of a feedback mechanism for reverse judgment dynamically optimizes model parameters, enhancing system accuracy and robustness. The model achieved an accuracy, precision, F1 score, and recall of 99.37%, 99.36%, 99.16%, and 99.36%, respectively, with an inference speed of only 1.5 ms/frame. Experimental results demonstrate the model’s superior performance across various complex detection scenarios, validating its practicality and reliability. This study opens new avenues for industrial applications, especially in real-time monitoring and automated systems, and provides valuable reference for future advancements in computer vision-based detection technologies.
MoreTranslated text
Key words
energetic liquid,viscosity visual recognition,integrated deep learning model,deep genetic feedback,Adaptive Genetic Selector
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Related Papers
2020
被引用57 | 浏览
2020
被引用21 | 浏览
2020
被引用19 | 浏览
2021
被引用17 | 浏览
2020
被引用4 | 浏览
2021
被引用10 | 浏览
2021
被引用31 | 浏览
2021
被引用30 | 浏览
2023
被引用7 | 浏览
2024
被引用5 | 浏览
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper