WeChat Mini Program
Old Version Features

Optimization of Rail-Armature Coupling for the Enhanced Electromagnetic Pellet Injection in J-TEXT Tokamak

IEEE TRANSACTIONS ON PLASMA SCIENCE(2024)

Cited 0|Views7
Abstract
Major disruption poses a significant challenge to the safe operation of tokamaks, so disruption mitigation is a key problem to be solved in tokamak. Currently, the fundamental strategy of disruption mitigation involves actively injecting significant quantities of impurity gas or solids (such as neon, argon, deuterium, etc.) to generate sufficient radiation power for dissipating the plasma’s energy. The most commonly used disruption mitigation devices now are massive gas injection (MGI) and shattered pellet injection (SPI). However, The impurity injection rate is low, resulting in shallow deposits in the tokamak. Electromagnetic pellet injection (EMPI) is a relatively new generation of disruption mitigation system developed in J-TEXT Tokamak. The system is based on the electromagnetic rail run concept. It uses electromagnetic force to launch the armature with an impurity pellet. The EMPI has been tested several times and the speed of the pellet has broken through the speed of sound, far exceeding the launch speed of the traditional disruption mitigation system. This means impurity is deposited at a deeper location. However, the rail length of EMPI is too long and the rail ablation is serious, so it is a challenging problem to satisfy the tokamak installation space requirements. Therefore, based on the EMPI, an enhanced EMPI is designed, which increases the electromagnetic force by increasing the magnetic field intensity within the bore. This enables the rail length to be decreased to meet the specified condition. Building upon this foundation, various armature-rail coupling structures have been designed. These structures are subjected to COMSOL finite element simulation to determine which rail-armature interface exhibits minimal ablation, superior electrical contact, and maximal armature launch velocity. Subsequently, the optimal rail-armature coupling scheme is validated through an experimentation test.
More
Translated text
Key words
Disruption mitigation,enhanced electromagnetic pellet injection (EMPI),rail-armature coupling,tokamak,Disruption mitigation,enhanced electromagnetic pellet injection (EMPI),rail-armature coupling,tokamak
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined