A Predictive Model Based on Radiomics, Clinical Features, and Pathologic Indicators for Disease-Free Survival after Liver Transplantation for Hepatocellular Carcinoma: a 7-Year Retrospective Study
JOURNAL OF GASTROINTESTINAL ONCOLOGY(2024)
Jinzhou Med Univ
Abstract
Background: Disease-free survival (DFS) is an essential indicator for evaluating the prognosis of liver transplantation (LT) in hepatocellular carcinoma (HCC) patients. Despite progress in the prediction of DFS by radiomics, only preoperative clinical features have been combined in most studies. The aim of this study was to construct a nomogram model (NM) using preoperative clinical features, radiomics, and postoperative pathological indicators for more effective prediction of DFS. Methods: This was a retrospective study of a single-center cohort comprising 139 HCC patients. Using the whole cohort, we constructed and assessed a clinical model (CM) based on alpha-fetoprotein (AFP) and alkaline phosphatase (ALP), a pathological model (PM) based on Ki-67 and tumor number, a radiomics model (RM) based on the radiomics score (Rad-score), and an NM based on the above five independent predictors.Results: Significant correlations between the NM and DFS were observed in the training and validation cohorts. Among the four prediction models, the C-index of the NM was the highest [(training/validation cohort) CM: 0.664/0.676, PM: 0.737/0.691, RM: 0.706/0.697, NM: 0.817/0.760], and the areas under the receiver operating characteristic curves (AUCs) of the NM prediction of 1-year, 2-year, and 3-year DFS were also the highest [(training/validation cohort) 1-year, 2-year, and 3-year CM: 0.726/0.726, 0.685/0.744, 0.645/0.686, PM: 0.789/0.780, 0.801/0.748, 0.841/0.735, RM: 0.769/0.752, 0.717/0.805, 0.748/0.765, NM: 0.882/0.854, 0.867/0.849, 0.882/0.801]. The NM also exhibited the highest net clinical benefit. Conclusions: Based on radiomics, clinical features, and pathological indicators, the NM could be used to effectively predict DFS after LT in HCC patients, guiding the follow-up and complementary treatmen
MoreTranslated text
Key words
Hepatocellular carcinoma (HCC),liver transplantation (LT),nomogram model (NM),radiomics,disease-free survival (DFS)2200
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined