WeChat Mini Program
Old Version Features

Adaptive Feature Alignment Network with Noise Suppression for Cross-Domain Object Detection

NEUROCOMPUTING(2025)

Wenzhou Univ | Chaoyang Normal Univ | Liaoning Normal Univ | Dalian Univ Technol

Cited 0|Views9
Abstract
Recently, unsupervised domain adaptive object detection methods have been proposed to address the challenge of detecting objects across different domains without labeled data in the target domain. These methods focus on aligning features either at the image level or the instance level. However, due to the absence of annotations in the target domain, existing approaches encounter challenges such as background noise at the image level and prototype aggregation noise at the instance level. To tackle these issues, we introduce a novel adaptive feature alignment network for cross-domain object detection, comprising two key modules. Firstly, we present an adaptive foreground-aware attention module equipped with a set of learnable part prototypes for image-level alignment. This module dynamically generates foreground attention maps, enabling the model to prioritize foreground features, thus reducing the impact of background noise. Secondly, we propose a class- aware prototype alignment module incorporating an optimal transport algorithm for instance-level alignment. This module mitigates the adverse effects of region-prototype aggregation noise by aligning prototypes with instances based on their semantic similarities. By integrating these two modules, our approach achieves better image-level and instance-level feature alignment. Extensive experiments across three challenging scenarios demonstrate the effectiveness of our method, outperforming state-of-the-art approaches in terms of object detection performance.
More
Translated text
Key words
Domain adaption,Object detection,Feature alignment
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined