WeChat Mini Program
Old Version Features

Desingularization of Vortices for the Incompressible Euler Equation on a Sphere

Daomin Cao, Shuanglong Li,Guodong Wang

arXiv · Analysis of PDEs

Cited 0|Views3
Abstract
In this paper, we construct a family of global solutions to the incompressible Euler equation on a standard 2-sphere. These solutions are odd-symmetric with respect to the equatorial plane and rotate with a constant angular speed around the polar axis. More importantly, these solutions “converges" to a pair of point vortices with equal strength and opposite signs. The construction is achieved by maximizing the energy-impulse functional relative to a family of suitable rearrangement classes and analyzing the asymptotic behavior of the maximizers. Based on their variational characterization, we also prove the stability of these rotating solutions with respect to odd-symmetric perturbations.
More
Translated text
PDF
Bibtex
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined