An AI Deep Learning Algorithm for Detecting Pulmonary Nodules on Ultra-Low-dose CT in an Emergency Setting: a Reader Study.
European Radiology Experimental(2024)
University of Amsterdam | Radboud University Medical Center | OLVG
Abstract
Abstract Background To retrospectively assess the added value of an artificial intelligence (AI) algorithm for detecting pulmonary nodules on ultra-low-dose computed tomography (ULDCT) performed at the emergency department (ED). Methods In the OPTIMACT trial, 870 patients with suspected nontraumatic pulmonary disease underwent ULDCT. The ED radiologist prospectively read the examinations and reported incidental pulmonary nodules requiring follow-up. All ULDCTs were processed post hoc using an AI deep learning software marking pulmonary nodules ≥ 6 mm. Three chest radiologists independently reviewed the subset of ULDCTs with either prospectively detected incidental nodules in 35/870 patients or AI marks in 458/870 patients; findings scored as nodules by at least two chest radiologists were used as true positive reference standard. Proportions of true and false positives were compared. Results During the OPTIMACT study, 59 incidental pulmonary nodules requiring follow-up were prospectively reported. In the current analysis, 18/59 (30.5%) nodules were scored as true positive while 104/1,862 (5.6%) AI marks in 84/870 patients (9.7%) were scored as true positive. Overall, 5.8 times more (104 versus 18) true positive pulmonary nodules were detected with the use of AI, at the expense of 42.9 times more (1,758 versus 41) false positives. There was a median number of 1 (IQR: 0–2) AI mark per ULDCT. Conclusion The use of AI on ULDCT in patients suspected of pulmonary disease in an emergency setting results in the detection of many more incidental pulmonary nodules requiring follow-up (5.8×) with a high trade-off in terms of false positives (42.9×). Relevance statement AI aids in the detection of incidental pulmonary nodules that require follow-up at chest-CT, aiding early pulmonary cancer detection but also results in an increase of false positive results that are mainly clustered in patients with major abnormalities. Trial registration The OPTIMACT trial was registered on 6 December 2016 in the National Trial Register (number NTR6163) (onderzoekmetmensen.nl). Key Points An AI deep learning algorithm was tested on 870 ULDCT examinations acquired in the ED. AI detected 5.8 times more pulmonary nodules requiring follow-up (true positives). AI resulted in the detection of 42.9 times more false positive results, clustered in patients with major abnormalities. AI in the ED setting may aid in early pulmonary cancer detection with a high trade-off in terms of false positives. Graphical Abstract
MoreTranslated text
Key words
Artificial intelligence,Emergency service (hospital),Multiple pulmonary nodules,Solitary pulmonary nodules,Tomography (x-ray computed)
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Related Papers
2012
被引用155 | 浏览
2010
被引用147 | 浏览
2008
被引用156 | 浏览
2009
被引用208 | 浏览
2015
被引用896 | 浏览
2016
被引用1162 | 浏览
2018
被引用62 | 浏览
2018
被引用29 | 浏览
2017
被引用1984 | 浏览
2020
被引用130 | 浏览
2022
被引用96 | 浏览
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper