WeChat Mini Program
Old Version Features

UMap: an Application-Oriented User Level Memory Mapping Library

INTERNATIONAL JOURNAL OF HIGH PERFORMANCE COMPUTING APPLICATIONS(2024)

KTH Royal Inst Technol | Lawrence Livermore Natl Lab

Cited 0|Views2
Abstract
Exploiting the prominent role of complex memories in exascale node architecture, the UMap page fault handler offers new capabilities to access large memory-mapped data sets directly. UMap provides flexible configuration options to customize page handling to each application, including analysis of massive observational and simulation data sets. The high-performance design features I/O decoupling, dynamic load balancing, and application-level controls. Page faults triggered by application threads and processes accessing data mapped to a UMapp’ed region are handled via the Linux userfaultfd protocol, an asynchronous message-oriented kernel-user communication mechanism that avoids the context switch penalty of traditional signal fault handlers. UMap is fully open source. In this paper, we give an overview of the UMap library architecture, its extensible plugin architecture, and the use/performance of UMap in emerging heterogeneous memory hierarchies such as near-node Non-volatile Memory (NVM) and network attached memories. We highlight new capabilities in two pagefault management plugins, the NetworkStore and SparseStore. We demonstrate the integration between UMap and multiple ECP products including Caliper, Metall, ZFP, Mochi, and Ripples.
More
Translated text
Key words
Memory mapping,mmap,page fault,user-space paging,userfaultfd,page management
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined