Fused Multi-Domains and Adaptive Variational Mode Decomposition ECG Feature Extraction for Lightweight Bio-Inspired Key Generation and Encryption
SENSORS(2024)
Durban Univ Technol
Abstract
Security is one of the increasingly significant issues given advancements in technology that harness data from multiple devices such as the internet of medical devices. While protecting data from unauthorized user access, several techniques are used including fingerprints, passwords, and others. One of the techniques that has attracted much attention is the use of human features, which has proven to be most effective because of the difficulties in impersonating human-related features. An example of a human-related attribute includes the electrical signal generated from the heart, mostly referred to as an Electrocardiogram (ECG) signal. The methods to extract features from ECG signals are time domain-based; however, the challenge with relying only on the time-domain or frequency-domain method is the inability to capture the intra-leading relationship of Variational Mode Decomposition signals. In this research, fusing multiple domains ECG feature and adaptive Variational Mode Decomposition approaches are utilized to mitigate the challenge of losing the intra-leading correlations of mode decompositions, which might reduce the robustness of encryption algorithms. The features extracted using the reconstructed signal have a mean (0.0004), standard deviation (0.0391), skewness (0.1562), and kurtosis (1.2205). Among the lightweight encryption methods considered, Chacha20 has a total execution time of 27µs. The study proposes a lightweight encryption technique based on the fused vector representation of extracted features to provide an encryption scheme in addition to a bio-inspired key generation technique for data encryption.
MoreTranslated text
Key words
time-domain feature extraction,lightweight encryption,adaptive variational mode decomposition,ECG feature extraction,bio-inspired key generation
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined