WeChat Mini Program
Old Version Features

A Deterministic Dynamical Low-rank Approach for Charged Particle Transport

CoRR(2024)

Cited 0|Views1
Abstract
Deterministically solving charged particle transport problems at a sufficient spatial and angular resolution is often prohibitively expensive, especially due to their highly forward peaked scattering. We propose a model order reduction approach which evolves the solution on a low-rank manifold in time, making computations feasible at much higher resolutions and reducing the overall run-time and memory footprint. For this, we use a hybrid dynamical low-rank approach based on a collided-uncollided split, i.e., the transport equation is split through a collision source method. Uncollided particles are described using a ray tracer, facilitating the inclusion of boundary conditions and straggling, whereas collided particles are represented using a moment method combined with the dynamical low-rank approximation. Here the energy is treated as a pseudo-time and a rank adaptive integrator is chosen to dynamically adapt the rank in energy. We can reproduce the results of a full-rank reference code at a much lower rank and thus computational cost and memory usage. The solution further achieves comparable accuracy with respect to TOPAS MC as previous deterministic approaches.
More
Translated text
PDF
Bibtex
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined