Comparative Analysis of Asphalt Pavement Condition Prediction Models
SUSTAINABILITY(2025)
Al Maaqal Univ
Abstract
There is a growing global interest in preserving transportation infrastructure. This necessitates routine evaluation and timely maintenance of road networks. The effectiveness of pavement management systems (PMSs) heavily relies on accurate pavement deterioration models. However, there are limited comparative studies on modeling approaches for rural roads in arid climatic conditions using the same datasets for training and testing. This study compares three approaches for developing a pavement condition index (PCI) model as a function of pavement age: classical regression, machine learning, and deep learning. The PCI is a pavement management index widely adopted by many road agencies. A dataset on pavement age and distress was collected over a twenty-year period to develop reliable predictive models. The results demonstrate that the regression model, machine learning model, and the deep learning model achieved a coefficient of determination (R2) of 0.973, 0.975, and 0.978, respectively. While these values are technically equal, the average bias for the deep learning model (1.14) was significantly lower than that of the other two models, signaling its superiority. Additionally, the trend predicted by the deep learning model showed more distinct phases of PCI deterioration with age than the machine learning model. The latter exhibited a wider range of PCI deterioration rates over time compared to the regression model. The deep learning model outperforms a recently developed regression model for a similar region. These findings highlight the potential of using deep learning to estimate pavement surface conditions accurately and its efficacy in capturing the PCI-age relationship.
MoreTranslated text
Key words
deterioration models,PCI,statistical modeling,flexible pavement,support vector machine,artificial neural network
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined