WeChat Mini Program
Old Version Features

Introduction to the Special Issue on NISKINe

Harper Simmons,Louis St. Laurent, Luc Rainville, Leif Thomas

Oceanography(2025)

Cited 0|Views0
Abstract
Near-inertial internal waves (NIW) constitute a dominant mode of high-frequency variability in the ocean’s interior, comprising about half the kinetic energy in the ocean at most sites (and even more in the winter beneath storm tracks; Alford et al., 2016). Over the last decade there has been a significant focus in the physical oceanographic community on internal tides, which produce large thermocline displacements, affect sound propagation, and control some hotspots of elevated turbulent mixing. Near-inertial internal gravity waves, which are primarily generated not by tides but by winds, are of similar importance, providing comparable kinetic energy and the vast majority of the shear variance, and likely leading to a substantial amount of turbulent mixing. Significant deficiencies remain in our understanding of the physical processes that determine their generation, evolution, and destruction.
More
Translated text
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined