A Generalizable Normative Deep Autospecific Brain Feature, the Higher the Average Difference and the Encoder for Brain Morphological Anomaly Detection: Application to the Multi-Site StratiBip Dataset on Bipolar Disorder in an External Validation Framework
Artificial Intelligence in Medicine(2025)
Department of Electronics | Department of Psychiatry | Fondazione IRCCS Santa Lucia
Abstract
The heterogeneity of psychiatric disorders makes researching disorder-specific neurobiological markers an ill-posed problem. Here, we face the need for disease stratification models by presenting a generalizable multivariate normative modelling framework for characterizing brain morphology, applied to bipolar disorder (BD). We used deep autoencoders in an anomaly detection framework, combined for the first time with a confounder removal step that integrates training and external validation.The model was trained with healthy control (HC) data from the human connectome project and applied to multi-site external data of HC and BD individuals. We found that brain deviating scores were greater, more heterogeneous, and with increased extreme values in the BD group, with volumes prominently from the basal ganglia, hippocampus, and adjacent regions emerging as significantly deviating. Similarly, individual brain deviating maps based on modified z scores expressed higher abnormalities occurrences, but their overall spatial overlap was lower compared to HCs.Our generalizable framework enabled the identification of brain deviating patterns differing between the subject and the group levels, a step forward towards the development of more effective and personalized clinical decision support systems and patient stratification in psychiatry.
MoreTranslated text
Key words
Normative modelling,Anomaly detection,Multi-site harmonization,Psychiatric disorders,Brain MRI
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
GPU is busy, summary generation fails
Rerequest